Implementation of a block-decomposition algorithm for solving large-scale conic semidefinite programming problems
نویسندگان
چکیده
In this paper, we consider block-decomposition first-order methods for solving large-scale conic semidefinite programming problems given in standard form. Several ingredients are introduced to speedup the method in its pure form such as: an aggressive choice of stepsize for performing the extragradient step; use of scaled inner products; dynamic update of the scaled inner product for properly balancing the primal and dual relative residuals; and proper choices of the initial primal and dual iterates, as well as the initial parameter for the scaled inner product. Finally, we present computational results showing that our method outperforms the two most competitive codes for large-scale conic semidefinite programs, namely: the boundary-point method introduced by Povh et al. and the Newton-CG augmented Lagrangian method by Zhao et al.
منابع مشابه
A New Compromise Decision-making Model based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty
This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal ...
متن کاملA Compromise Decision-Making Model Based on TOPSIS and VIKOR for Multi-Objective Large- Scale Nonlinear Programming Problems with A Block Angular Structure under Fuzzy Environment
This paper proposes a compromise model, based on a new method, to solve the multiobjectivelarge scale linear programming (MOLSLP) problems with block angular structureinvolving fuzzy parameters. The problem involves fuzzy parameters in the objectivefunctions and constraints. In this compromise programming method, two concepts areconsidered simultaneously. First of them is that the optimal alter...
متن کاملAn inexact block-decomposition method for extra large-scale conic semidefinite programming
In this paper, we present an inexact block-decomposition (BD) first-order method for solving standard form conic semidefinite programming (SDP) which avoids computations of exact projections onto the manifold defined by the affine constraints and, as a result, is able to handle extra large SDP instances. The method is based on a two-block reformulation of the optimality conditions where the fir...
متن کاملA Compromise Decision-making Model for Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty
This paper proposes a compromise model, based on the technique for order preference through similarity ideal solution (TOPSIS) methodology, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. This compromise programming method is ba...
متن کاملProjection methods for conic feasibility problems: applications to polynomial sum-of-squares decompositions
This paper presents a projection-based approach for solving conic feasibility problems. To find a point in the intersection of a cone and an affine subspace, we simply project a point onto this intersection. This projection is computed by dual algorithms operating a sequence of projections onto the cone, and generalizing the alternating projection method. We release an easy-to-use Matlab packag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 57 شماره
صفحات -
تاریخ انتشار 2014